35,313 research outputs found

    Finite size scaling analysis of compact QED

    Get PDF
    We describe results of a high-statistics finite size scaling analysis of 4d compact U(1) lattice gauge theory with Wilson action at the phase transition point. Using a multicanonical hybrid Monte Carlo algorithm we generate data samples with more than 150 tunneling events between the metastable states of the system, on lattice sizes up to 18^4. We performed a first analysis within the Borgs-Kotecky finite size scaling scheme. As a result, we report evidence for a first-order phase transition with a plaquette energy gap, G=0.02667(20), at a transition coupling, beta_T=1.011128(11).Comment: Lattice 2000 (Topics in Gauge Theories),6 pages, 6 figures, LaTe

    Experimental neutrino physics

    Full text link
    The current experimental status of neutrino physics is reviewed. It contains the evidences for a non-vanishing neutrino rest mass from neutrino oscillation searches. In addition an outlook is given on determining the various mixing matrix elements and mass differences more precisely with new experiments. Of special interest is the value of the mixing angle \theta_{13} determining the possibility of detecting leptonic CP violation in the future. The prospect for absolute mass measurements using beta and double beta decay as well as cosmological observations is presented.Comment: 11 pages, 11 figures, Inv. talk presented at the DPF 2004 meeting of the APS, Riverside, Aug. 200

    On the equivalence between stochastic baker's maps and two-dimensional spin systems

    Full text link
    We show that there is a class of stochastic baker's transformations that is equivalent to the class of equilibrium solutions of two-dimensional spin systems with finite interaction. The construction is such that the equilibrium distribution of the spin lattice is identical to the invariant measure in the corresponding baker's transformation. We also find that the entropy of the spin system is up to a constant equal to the rate of entropy production in the corresponding stochastic baker's transformation. We illustrate the equivalence by deriving two stochastic baker's maps representing the Ising model at a temperature above and below the critical temperature, respectively. We calculate the invariant measure of the stochastic baker's transformation numerically. The equivalence is demonstrated by finding that the free energy in the baker system is in agreement with analytic results of the two-dimensional Ising model.Comment: 4 pages, 4 figure

    Aerosol particle molecular spectroscopy

    Get PDF
    The molecular spectroscopy of a solution particle by structure resonance modulation spectroscopy is discussed [S. Arnold and A. B. Pluchino, "Infrared Spectrum of a Single Aerosol Particle by Photothermal Modulation of Structure Resonances," Appl. Opt. 21, 4194 (1982); S. Arnold et al., "Molecular Spectroscopy of a Single Aerosol Particle," Opt. Lett. 9, 4 (1984)]. Analytical equations are derived for time dependence of the particle radius as it interacts with a low intensity IR source (<20 mW/cm^2). This formalism is found to be in good agreement with pulsed experiments. Working equations for the spectroscopy are derived for both constant and periodic IR excitation

    Nuclide production in (very) small meteorites

    Get PDF
    One of the most interesting open questions in the study of cosmic-ray effects in meteorites is the expected behavior of objects which are very small compared to the mean interaction length of primary galactic cosmic ray (GCR) particles. A reasonable limit might be a pre-atmospheric radius of 5 gram/cm(2), or 1.5 cm for chondrites. These are interesting for at least three reasons: (1) this is a limiting case for large objects, and can help us make better models; (2) this size is intermediate between usual meteorites and irradiated grams (spherules); and (3) these are the most likely objects to show solar cosmic ray (SCR) effects. Reedy (1984) has recently proposed a model for production by GCR of radioactive and stable nuclides in spherical meteorites. Very small objects are expected to deviate from this model in the direction of fewer secondary particles (larger spectral shape parameter), at all depths. The net effect will be significantly lower production of such low-energy products as Mn-53 and Al-26. The SCR production of these and other nuclides will be lower, too, because meteorite orbits extend typically out into the asteroid belt, and the mean SCR flux must fall off approximately as r(-2) with distance from the Sun. Kepler's laws insure that for such orbits most of the exposure time is spent near aphelion. None the less the equivalent mean exposure distance, R(exp), is slightly less than the semimajor axis A because of the weighting by R(-2). For the three meteorite orbits we have, R(exp) has a narrow range, from about 1.6 to 2.1 a.u. This is probably true for the great majority of meteorites
    • 

    corecore